

Motivation

- Actions consist of spatio-temporal configurations of body parts.
- There has been a huge success of using discriminative, interpretable body part configurations for skeleton-based action recognition [2].
- -3D body parts are described in terms of the positions/velocities of their joints. • Finding body part configurations in a video is challenging because:
- -Joint positions are not measured \rightarrow they have to be annotated or estimated. -Local features do not capture the appearance and movement of body parts.

Contributions

- Propose a video representation based on shared and discriminative mid-level classifiers (deep moving poselets) that capture characteristic spatio-temporal configurations of body parts during different phases of an action.
- -We describe a video of an action with an "activation vector", which captures the degree to which each configuration is present in the video.
- -Activation vectors provide a distributed representation of pose, movement, appearance and context.
- Propose a method for learning the deep moving poselets representation.
- -Extract deep features from short tubelets around a hierarchy of body parts. -Max-margin approach to learn both deep moving poselets and action classifiers.

Deep Feature Extraction from Short Tubelets

- Fig. 1: Bounding boxes around body parts are inferred based on joint locations.
- Find 2D bounding box containing all joints defining a body part.
- A *tubelet* is a temporal sequence of L bounding boxes containing the joint trajectories of a bodypart.
- A tubelet is represented with a vector of max-pooled deep features.

Fig. 2: Deep features [1] are extracted from each bounding box of the tubelet and are temporally max-pooled to obtain a tubelet descriptor.

Deep Moving Poselets For Video Based Action Recognition Effrosyni Mavroudi René Vidal Lingling Tao

Center for Imaging Science, Johns Hopkins University, Baltimore, USA

Method	Features	Accura	LCY (%)
		GT Joints	PE Joints
DT [3]	RGB	46	5.0
NTraj [3]	2D Pose	75.1	54.1
DT + NTraj [3]	RGB + 2D Pose	75.5	52.9
MST-AOG [6] [5]	RGB + 2D Pose	_	45.3
AOG $[5]$	RGB + 2D Pose	_	61.2
[4]	RGB + 3D Pose	77.5	_
P-CNN [1]	RGB + Bps	72.5	66.8
Ours	RGB + Bps	79.2	70.2

Ablation Analysis

Method	Accuracy (%)	
app, full body, no sliding window	60.3	
mot, full body, no sliding window	66.1	
app+mot, full body, no sliding window	74.3	
app+mot, all bps, no sliding window	77.7	
app+mot, all bps, with sliding window	79.2	

Method	Accuracy (%)
P-CNN + SVM [1]	72.5
P-CNN + DMPs (no sliding window)	74.3
P-CNN + DMPs (with sliding window)	76.9

- Experiments on sub-JHMDB with annotated joints.
- \checkmark Appearance and motion streams are complementary.
- \checkmark Hierarchical body part structure improves over full body.
- \checkmark Extracting short tubelets further improves performance.
- \checkmark Adding a mid-level representation improves over P-CNN + SVM.

Fig. 4: Examples of deep moving poselets shared among action classes in the sub-JHMDB dataset (split 2). Each row shows 3 tubelets from different classes with high activations for a specific poselet.

- [1] G. Chéron et al., P-CNN: Pose-Based CNN Features For Action Recognition. ICCV'15.
- recognition. ICCVW'15.
- [3] H. Jhuang et al., Towards Understanding Action Recognition ICCV'13.
- Actionlets and Motion Poselets. CVPR'16.
- [5] B. X. Nie et al., Joint action recognition and pose estimation from video. CVPR'15.
- [6] J. Wang et al., Cross-View Action Modeling, Learning and Recognition. CVPR'14.

References

[2] L. Tao et al., Moving poselets: A discriminative and interpretable skeletal motion representation for action

[4] I. Lillo et al., A Hierarchical Pose-Based Approach To Complex Action Understanding Using Dictionaries of

[7] Y. Zhou et al., Interaction part mining: A mid-level approach for fine-grained action recognition. CVPR'15.