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Motivation

e Actions consist of spatio-temporal configurations of body parts.

e There has been a huge success of using discriminative, interpretable body part
configurations for skeleton-based action recognition |2|.

— 3D body parts are described in terms of the positions/velocities of their joints.
e Finding body part configurations in a video is challenging because:

— Joint positions are not measured — they have to be annotated or estimated.

— Local features do not capture the appearance and movement of body parts.

Contributions

e Propose a video representation based on shared and discriminative mid-level
classifiers (deep moving poselets) that capture characteristic spatio-temporal
configurations of body parts during different phases of an action.

— We describe a video of an action with an “activation vector”, which captures
the degree to which each configuration is present in the video.
— Activation vectors provide a distributed representation of pose, movement,
appearance and context.
e Propose a method for learning the deep moving poselets representation.

— Extract deep features from short tubelets around a hierarchy of body parts.

— Max-margin approach to learn both deep moving poselets and action classifiers.

Deep Feature Extraction from Short Tubelets

e Find 2D bounding box containing
all joints defining a body part.

e A tubelet is a temporal sequence of
L bounding boxes containing the
joint trajectories of a bodypart.

Fig. 1: Bounding boxes around body
parts are inferred based on joint locations.

e A tubelet is represented with a vec-
tor of max-pooled deep features.
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Fig. 2: Deep features [1]| are extracted from each bounding box of the tubelet and
are temporally max-pooled to obtain a tubelet descriptor.
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Learning Deep Moving Poselet Representation
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Quantitative Results

Features

Accuracy (%)

GT

Jomnts|PE Joints

RGB

46.0

NTraj- 2D Pose

5.1

H4.1

DT + NTraj [3] /I D Pose
MST-AOG [6] [5] /1 D Pose
AOG 5] | D Pose

4] RG] D Pose

5.5

7.5

52.9
- 45.3
61.2

P-CNN (1] - Bps
Ours - Bps

(2.5
79.2

66.3
70.2

Table 1: sub-JHMDB (GT: human annotated joints, PE:

pose-estimated joints, Bps: body parts)

Method

RGB

STIP [6]

DT |7]
MST-AOG [6] 73.1
[PM [7] 83.3

RGB + Pose
[PM+Joints [7] 89.3
RGB + Body parts
Ours 84.4

Acc (%)

H4.5
1.7

Table 2: MSR Daily Activity
3D

Ablation Analysis

Method

Accuracy (%)

app, full body, no sliding window
mot, full body, no sliding window

app+mot, all bps, no sliding window

app+mot, full body, no sliding window

app+mot, all bps, with sliding window

60.3
66.1
4.3
7.7
79.2

Method

Accuracy (%)

P-CNN + SVM [1]
P-CNN + DMPs (no sliding window)

P-CNN + DMPs (with sliding window)

2.5
4.3
76.9

e Experiments on sub-JHMDDB with
annotated joints.

v Appearance and motion streams
are complementary:.

v" Hierarchical body part structure
improves over full body:.

v Extracting short tubelets further
improves performance.

v~ Adding a mid-level representation
improves over P-CNN + SVM.
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Fig. 3: From left to right: each column shows the 5 most significant deep moving
poselets for action classes catch, swing baseball, pullup.
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Fig. 4: Examples of deep moving poselets shared among action classes in the
sub-JHMDB dataset (split 2). Each row shows 3 tubelets from different classes
with high activations for a specific poselet.
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