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Motivation

•Actions consist of spatio-temporal configurations of body parts.

•There has been a huge success of using discriminative, interpretable body part
configurations for skeleton-based action recognition [2].

– 3D body parts are described in terms of the positions/velocities of their joints.

•Finding body part configurations in a video is challenging because:

– Joint positions are not measured → they have to be annotated or estimated.

– Local features do not capture the appearance and movement of body parts.

Contributions

•Propose a video representation based on shared and discriminative mid-level
classifiers (deep moving poselets) that capture characteristic spatio-temporal
configurations of body parts during different phases of an action.

– We describe a video of an action with an “activation vector”, which captures
the degree to which each configuration is present in the video.

– Activation vectors provide a distributed representation of pose, movement,
appearance and context.

•Propose a method for learning the deep moving poselets representation.

– Extract deep features from short tubelets around a hierarchy of body parts.

– Max-margin approach to learn both deep moving poselets and action classifiers.

Deep Feature Extraction from Short Tubelets

Fig. 1: Bounding boxes around body
parts are inferred based on joint locations.

•Find 2D bounding box containing
all joints defining a body part.

•A tubelet is a temporal sequence of
L bounding boxes containing the
joint trajectories of a bodypart.

•A tubelet is represented with a vec-
tor of max-pooled deep features.
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Fig. 2: Deep features [1] are extracted from each bounding box of the tubelet and
are temporally max-pooled to obtain a tubelet descriptor.

Learning Deep Moving Poselet Representation
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Quantitative Results

Method Features Accuracy (%)

GT Joints PE Joints

DT [3] RGB 46.0

NTraj [3] 2D Pose 75.1 54.1

DT + NTraj [3] RGB + 2D Pose 75.5 52.9
MST-AOG [6] [5] RGB + 2D Pose - 45.3

AOG [5] RGB + 2D Pose - 61.2
[4] RGB + 3D Pose 77.5 -

P-CNN [1] RGB + Bps 72.5 66.8
Ours RGB + Bps 79.2 70.2

Table 1: sub-JHMDB (GT: human annotated joints, PE:
pose-estimated joints, Bps: body parts)

Method Acc (%)

RGB

STIP [6] 54.5
DT [7] 71.7

MST-AOG [6] 73.1
IPM [7] 83.3

RGB + Pose

IPM+Joints [7] 89.3

RGB + Body parts

Ours 84.4

Table 2: MSR Daily Activity
3D

Ablation Analysis

Method Accuracy (%)

app, full body, no sliding window 60.3
mot, full body, no sliding window 66.1

app+mot, full body, no sliding window 74.3
app+mot, all bps, no sliding window 77.7

app+mot, all bps, with sliding window 79.2

Method Accuracy (%)

P-CNN + SVM [1] 72.5
P-CNN + DMPs (no sliding window) 74.3

P-CNN + DMPs (with sliding window) 76.9

•Experiments on sub-JHMDB with
annotated joints.

XAppearance and motion streams
are complementary.

XHierarchical body part structure
improves over full body.

XExtracting short tubelets further
improves performance.

XAdding a mid-level representation
improves over P-CNN + SVM.

Qualitative Results

Fig. 3: From left to right: each column shows the 5 most significant deep moving
poselets for action classes catch, swing baseball, pullup.

Fig. 4: Examples of deep moving poselets shared among action classes in the
sub-JHMDB dataset (split 2). Each row shows 3 tubelets from different classes
with high activations for a specific poselet.
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