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Why Is Action Classification Important?

Action recognition applications:

Human-robot interaction

Surveillance

Patient monitoring

Sports video analysis

Web video search and
retrieval

[Ramanathan15]
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Previous Work: Midlevel Representations
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Our Work: Deep Moving Poselets

A new mid-level representation for action recognition

3 deep moving poselet = appearance of body part in motion
3 discriminative, shared and interpretable mid-level representation
3 features from tubelets along a hierarchy of body parts

A new end-to-end learning method

3 joint max-margin learning of moving poselets and action classifiers
3 elastic-net regularization encourages sharing and discriminability



Deep Moving Poselets Representation

Extracting tubelet around the upper body from the first 15 frames.
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Deep Moving Poselets Representation

Appearance feature extracted from tubelet.
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Deep Moving Poselets Representation

Motion feature extracted from tubelet.
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Deep Moving Poselets Representation

Appearance and motion features are extracted from all temporal windows.
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Deep Moving Poselets Representation

Compute response map and activation vector associated with body part.
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Deep Moving Poselets Representation
Activation vector from all body parts is fed to action classifiers.
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Learning Deep Moving Poselets

Max-margin formulation for joint learning of action classifiers and
moving poselets

min
D,d,
W,b

C∑
c=1

N∑
n=1

max(0, 1 − Ycn

label

(W>
c ReLU(F(X(n),D,d)) + bc))︸ ︷︷ ︸

hinge loss

+ λ (RW (W) + RD(D))︸ ︷︷ ︸
regularization

(1)

Choices for regularization on W: `2 or elastic net.

Joint training by Stochastic Gradient Descent.



Results On sub-JHMDB

12 action classes
I e.g., catch, golf, run and walk

Realistic videos
I clips from movies, YouTube etc.

Visible full body

Joint annotations available
I human annotated joints (GT)
I pose estimated (PE)



Results On sub-JHMDB

State-of-the-art for both GT and PE joints.

Method Features Accuracy (%)

GT Joints PE Joints

DT[Jhuang13] RGB 46.0 46.0

NTraj[Jhuang13] 2D Pose 75.1 54.1

DT + NTraj[Jhuang13] RGB + 2D Pose 75.5 52.9
MST-AOG[Wang14] RGB + 2D Pose - 45.3

AOG[Nie15] RGB + 2D Pose - 61.2
Lillo[Lillo16] RGB + 3D Pose 77.5 -

P-CNN[Cheron15] RGB + Bps 72.5 66.8
Ours RGB + Bps 79.2 70.2



Results On sub-JHMDB

Body parts + mid-level representation outperform 2D pose features.

Method Features Accuracy (%)

GT Joints PE Joints

DT[Jhuang13] RGB 46.0 46.0

NTraj[Jhuang13] 2D Pose 75.1 54.1

DT + NTraj[Jhuang13] RGB + 2D Pose 75.5 52.9
MST-AOG[Wang14] RGB + 2D Pose - 45.3

AOG[Nie15] RGB + 2D Pose - 61.2
Lillo[Lillo16] RGB + 3D Pose 77.5 -

P-CNN[Cheron15] RGB + Bps 72.5 66.8
Ours RGB + Bps 79.2 70.2



Results On sub-JHMDB

Body-part based methods are less sensitive to pose estimation errors.

Method Features Accuracy (%)

GT Joints PE Joints

DT[Jhuang13] RGB 46.0 46.0

NTraj[Jhuang13] 2D Pose 75.1 54.1

DT + NTraj[Jhuang13] RGB + 2D Pose 75.5 52.9 -22%
MST-AOG[Wang14] RGB + 2D Pose - 45.3

AOG[Nie15] RGB + 2D Pose - 61.2
Lillo[Lillo16] RGB + 3D Pose 77.5 -

P-CNN[Cheron15] RGB + Bps 72.5 66.8
Ours RGB + Bps 79.2 70.2 -9%

More experiments and qualitative results in paper/poster.



Discriminative Poselets Visualization

catch
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Conclusions

A new mid-level representation for action recognition

3 deep moving poselet = appearance of body part in motion
3 discriminative, shared and interpretable mid-level representation
3 features from tubelets along a hierarchy of body parts

A new end-to-end learning method

3 joint max-margin learning of moving poselets and action classifiers
3 group-sparse regularization encourages sharing and discriminability


