

- mentation and recognition.

- (SGD).

This work was supported by NIH grant R01HD87133.

End-to-End Fine-Grained Action Segmentation and Recognition Using Conditional Random Field Models and Discriminative Sparse Coding

Effrosyni Mavroudi[†]

Divya Bhaskara^{†‡}

[†]Johns Hopkins University, [‡]University of Virginia, [‡]Comcast AI Research

Comparison with state-of-the-art on JIGSAWS dataset.

Shahin Sefati^{†‡}

Haider Ali[†] René Vidal^{\dagger}

$$|\Psi\rangle, \mathbf{Y}^n\rangle\rangle + \frac{1}{2} ||\mathbf{W}||_F^2$$

od	50 Salads				
	eval	mid			
RF[8]	77.8	55.05			
[7]	73.3	-			
7]	82.0	_			
	80.04	56.72			

Method	JIGSAWS		Method	50 Salads			
	NP LOSO	NP LOUO		eval	mid		
raw + CRF	66.24(0.10)	59.47 (0.18)	raw + CRF	$71.81 \ (0.55)$	44.83(0.73)		
SF + CRF	71.72(0.07)	60.59(0.19)	SF + CRF	$76.65\ (0.19)$	52.63(0.23)		
SF + SC-CRF	74.63(0.02)	65.75(0.12)	SF + SC-CRF	80.24 (0.20)	56.73 (0.08)		
SDL + SC-CRF	75.19 (0.12)	66.25 (0.06)	SDL + SC-CRF	80.54 (0.11)	56.72(0.72)		

 \checkmark Sparse coding features (SF + CRF) improve over raw kinematic features. -Dictionary learned in an unsupervised manner from training data. \checkmark Skip-Chain CRF (SC-CRF) improves over Linear Chain CRF. \checkmark Joint learning of Dictionary and CRF (SDL+CRF) generally boosts performance.

Qualitative examples of ground truth temporal segmentations (GT), predicted temporal segmentations (Pred) and predictions postprocessed by median filtering (Pred+med).

References

[1] N. Ahmidi et al., A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery. TBME'17. [2] L. Tao et al., Sparse Hidden Markov Models for Surgical Gesture Classification and Skill Evaluation. IPCAI'12. [3] L. Tao et al., Segmentation and Recognition of Surgical Gestures from Kinematic and Video Data. MICCAI'13. [4] C. Lea et al., An Improved Model for Segmentation and Recognition of Fine-Grained Activities with Application to Surgical Training Tasks. WACV'15.

[5] S. Sefati et al., Learning Shared, Discriminative Dictionaries for Surgical Gesture Segmentation and Classification. M2CAI'15. [6] R. DiPietro et al., Recognizing surgical activities with recurrent neural networks. MICCAI'16.

- [7] C. Lea et al., Temporal Convolutional Networks: A Unified Approach to Action Segmentation. ECCV16-WBNIMR. [8] C. Lea et al., Learning Convolutional Action Primitives for Fine-grained Action Recognition. ICRA'16.

Ablation Analysis