End-to-End Fine-Grained Action Segmentation and Recognition Using
Conditional Random Field Models and Discriminative Sparse Coding
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Applications of fine-grained action segmentation and recognition. *X Method JIGSAWS Method 50 Salads
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Frame Reprosentation Sparse Coding raw + CRE | 66.24 (0.10) 5947 (0.18) raw + CRF | 7181 (0.55)  44.83 (0.73)
Represent kinematic data x; at F + CRF 71.72 (0.07) 1 60.59 (0.1 SF + CRF 76.65 (0.19) | 52.63 (0.23)
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from an overcomplete dictionary L | | | .
W. Sparse codes u, are the coeffi- [ P J Xt Dictionary ¥ = v' Sparse coding features (SF + CRF) improve over raw kinematic features.
cients of this linear combination. U : — Dictionary learned in an unsupervised manner from training data.
(a) Automatic Surgical Skill Evaluation (b) Assisted Living and Smart Home Environments * v Sklp—Cham CRF (SC_CRF) Improves over Linear Chain CRF.
— . Local Temporal Average Pooling v" Joint learning of Dictionary and CRF (SDL+4CRF) generally boosts performance.
ocal Temporal Representation
Contributions Perform average pooling of sparse = —
codes 1n a short temporal window Qualitative Results
e Propose a novel spatio-temporal model for fine-grained action seg- to obtain frame feature z,.

mentation and recognition.
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— Frame representation: Discriminative Sparse Coding.
— Temporal model: Conditional Random Field (CRF).

Global Temporal Representation

CRF unary potentials represent

e Propose an algorithm for training our model in an end-to-end fashion. cost of assigning a label to a frame I '

— Jointly learn a task-specific discriminative dictionary and the CRF and are obtained by applying a 5 Suturing
unary and pairwise parameters using Stochastic Gradient Descent linear classifier (W") to the local 000 4000 6000 3000 LOS0
(SGD). temporal representation. Pairwise 5

weights (W) capture the transi- =
+
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Joint Dictionary and CRF Learning 1000 1500 2000 2500 3000
We use a max-margin formulation and SGD to jointly learn the dictionary ¥ and the Condi-
tional Random Field weights W by minimizing: ,
Suturing
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o JIGSAWS: S

— 76-dimensional surgical robot kinematic data. Quantit ative Results "o 500 1000 1500 2000 2500 3000

— 3 tasks: Suturing (SU), Knot Tying (KT), Needle Passing (NP). - | |

_ 2 experimental setups: leave-one-supertrial-out (LOSO), leave-one- Method 1,OSO LOUO Qualitative examples of ground truth temporal segmentations (GT), predicted temporal seg-

| SU NP | SU NP mentations (Pred) and predictions postprocessed by median filtering (Pred+med).

user-out (LOUO).
e 50 Salads:

— Data recorded by 10 accelerometers attached to kitchen tools.

GMM-HMM [1] | 8222 70.55 73.95 64.13
SHMM [2, 1] 83.40 73.09 73.45 62.78
MsM-CRF [3,1] | 81.99 72.44 67.84 63.28
SC-CRF-SL [4, 1] 85.18 75.09 81.74 74.77
SDSDL [5] 86.32 74.83 78.68 66.01
LSTM [6] i - 7838 -

BiLSTM 6] i - 18015 -

TCN [7] - - 796 - Comparison with state-of-the-art

LC-SC-CRF 8] - - 83.4 - on b0 Salads dataset.
Ours 86.21 75.19 78.16 66.25

Method 50 Salads
eval | mid
LC-SC-CRF [8]| 77.8 | 55.05

LSTM |[7] 73.3 -

TCN [7] 82.0 -
Ours 50.04 56.72
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