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Motivation
Applications of fine-grained action segmentation and recognition.

(a) Automatic Surgical Skill Evaluation (b) Assisted Living and Smart Home Environments

Contributions

•Propose a novel spatio-temporal model for fine-grained action seg-
mentation and recognition.

– Frame representation: Discriminative Sparse Coding.

– Temporal model: Conditional Random Field (CRF).

•Propose an algorithm for training our model in an end-to-end fashion.

– Jointly learn a task-specific discriminative dictionary and the CRF
unary and pairwise parameters using Stochastic Gradient Descent
(SGD).
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• JIGSAWS:

– 76-dimensional surgical robot kinematic data.

– 3 tasks: Suturing (SU), Knot Tying (KT), Needle Passing (NP).

– 2 experimental setups: leave-one-supertrial-out (LOSO), leave-one-
user-out (LOUO).

• 50 Salads:

– Data recorded by 10 accelerometers attached to kitchen tools.

– 2 levels of granularity for annotations: eval and mid.

– 5 train/test splits [7].

•Prior work:
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Spatio-temporal Representation

Frame Representation

Represent kinematic data xt at
time t as a linear combination of
a small number of basis elements
from an overcomplete dictionary
Ψ. Sparse codes ut are the coeffi-
cients of this linear combination.

Local Temporal Representation

Perform average pooling of sparse
codes in a short temporal window
to obtain frame feature zt.

Global Temporal Representation

CRF unary potentials represent
cost of assigning a label to a frame
and are obtained by applying a
linear classifier (WU) to the local
temporal representation. Pairwise
weights (WP ) capture the transi-
tions between actions and encour-
age smoothness of the predicted la-
bel sequence. (W =

[
WU WP

]
).

Joint Dictionary and CRF Learning
We use a max-margin formulation and SGD to jointly learn the dictionary Ψ and the Condi-
tional Random Field weights W by minimizing:
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Quantitative Results

Method LOSO LOUO

SU NP SU NP

GMM-HMM [1] 82.22 70.55 73.95 64.13
SHMM [2, 1] 83.40 73.09 73.45 62.78
MsM-CRF [3, 1] 81.99 72.44 67.84 63.28
SC-CRF-SL [4, 1] 85.18 75.09 81.74 74.77
SDSDL [5] 86.32 74.88 78.68 66.01
LSTM [6] - - 78.38 -
BiLSTM [6] - - 80.15 -
TCN [7] - - 79.6 -
LC-SC-CRF [8] - - 83.4 -
Ours 86.21 75.19 78.16 66.25

Comparison with state-of-the-art on JIGSAWS dataset.

Method 50 Salads

eval mid

LC-SC-CRF [8] 77.8 55.05
LSTM [7] 73.3 -
TCN [7] 82.0 -

Ours 80.04 56.72

Comparison with state-of-the-art
on 50 Salads dataset.

Ablation Analysis

Method JIGSAWS

NP LOSO NP LOUO

raw + CRF 66.24 (0.10) 59.47 (0.18)
SF + CRF 71.72 (0.07) 60.59 (0.19)
SF + SC-CRF 74.63 (0.02) 65.75 (0.12)
SDL + SC-CRF 75.19 (0.12) 66.25 (0.06)

Method 50 Salads

eval mid

raw + CRF 71.81 (0.55) 44.83 (0.73)
SF + CRF 76.65 (0.19) 52.63 (0.23)
SF + SC-CRF 80.24 (0.20) 56.73 (0.08)
SDL + SC-CRF 80.54 (0.11) 56.72 (0.72)

X Sparse coding features (SF + CRF) improve over raw kinematic features.

– Dictionary learned in an unsupervised manner from training data.

X Skip-Chain CRF (SC-CRF) improves over Linear Chain CRF.

X Joint learning of Dictionary and CRF (SDL+CRF) generally boosts performance.

Qualitative Results
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Qualitative examples of ground truth temporal segmentations (GT), predicted temporal seg-
mentations (Pred) and predictions postprocessed by median filtering (Pred+med).
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