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Fine-grained Action Segmentation and Recognition

1) Which actions?
2) When does each action start/end?

Input: Kinematic data
   time-series

Output: Action labels per
             frame

position 
needle

insert 
needle

transfer 
needle



Applications

Automatic Surgical Skill 
Assessment

Assisted Living And     
Smart Home Environments

 [1] 
https://biomedical.closeupengineering.it/wp-content/uploads/2015/07/immagine-evid-11.jpg
 [2] http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads/
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Related Work
• Skip Chain Conditional 

Random Field (SC-CRF) [2]
• Discriminative Sparse 

Dictionary Learning 
(SDSDL)  [1]

✔ Spatial model: 
Discriminative
Sparse Coding

Dictionary shared 
between actions 
and jointly trained 
with per-frame 
SVM classifier.

✘ Temporal model: 
Precomputed 
transition 
probabilities

✘ Spatial model: 
Raw Kinematic 
Data

✔ Temporal 
model: Skip-Chain 
CRF

SC-CRF can 
model action to 
action transitions 
over large  
periods of time.

[1] S. Sefati, N. J. Cowan, and R. Vidal. Learning shared, discriminative dictionaries for surgical 
gesture segmentation  and classification, M2CAI 2015
[2] C. Lea, G. D. Hager, and R. Vidal. An improved model for segmentation and recognition of 
fine-grained  activities with application to surgical training tasks, WACV15



Our model: Frame Representation

Sparse coding: represent input kinematic 
data at time t as a combination of a small 
number of atoms from dictionary 𝚿. 

Model Overview



Our model: Local Temporal Representation

Obtain frame feature by average pooling 
sparse codes in a short temporal window.

Model Overview



Our model: Global Temporal Representation

Unary potentials: cost of assigning a 
label yt to frame t. 
Pairwise potentials: capture transitions 
between actions and encourage 
smoothness of labels.

Model Overview Skip-chain 
d = 2



Our model: Training
Model Overview • End-to-end training of task-driven 

discriminative dictionary 𝚿 and CRF 
parameters 𝐖.

• Use max-margin formulation for 
structured prediction and optimize 
using Stochastic Gradient Descent.

• Key challenge: Computing gradient 
w.r.t dictionary 𝚿.



JIGSAWS Dataset

 [1] JIGSAWS dataset https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/

2-5 min 
trials (30 Hz)

6-10 action 
classes for 
each task

3 surgical 
tasks 

8 surgeons

76-dim robot 
kinematic 

data

https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
https://docs.google.com/file/d/1rZ7EpLANJbzTE1PrIltsnMiKFqlYysl_/preview


Experimental Results

Sparse 
Features

Skip
Chain

End-to-end 
Training

Baseline



Qualitative Results
Ground Truth 
Labels

Predicted Labels

Predicted Labels + 
median filtering

Ground Truth 
Labels

Predicted Labels

Predicted Labels + 
median filtering



Quantitative Results
LOSO LOUO

SU KT NP SU KT NP

GMM-HMM 82.22 80.95 70.55 73.95 72.47 64.13

KSVD-SHMM 83.40 83.54 73.09 73.45 74.89 62.78

MsM-CRF 81.99 79.26 72.44 67.84 44.68 63.28

SC-CRF-SL 85.18 84.03 75.09 81.74 78.95 74.77

LC-SC-CRF 83.40

LSTM 78.38

BiLSTM 80.15

TCN 79.6

SDSDL 86.32 82.54 74.88 78.68 75.11 66.01

Ours 86.21 83.89 75.19 78.16 76.68 66.25

Competitive performance: among 2 best methods for almost all tasks



Conclusions
• A novel spatio-temporal model for fine-grained action 

segmentation and recognition 

• A novel end-to-end max-margin learning method

For more details visit poster 3B-2 !

Frame Representation Temporal Model

+
Discriminative Dictionary Learning Skip-Chain CRF
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